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LECTURE 8

Continuous functions:

• Definitions, examples

• Arithmetic properties

• Composition (including proper proof)

• Intermediate value thm.



Definition. 

A function 𝑓(𝑥) is said to be continuous at a point 𝑝 iff 

1. 𝑝 ∈ 𝐷𝑜𝑚𝑓

2. lim
𝑥→𝑝

𝑓 𝑥 exists 

3. lim
𝑥→𝑝

𝑓 𝑥 = 𝑓(𝑝)

Remark

If 𝑓(𝑥) is not continuous at 𝑝 then 𝑝 is called a (point of)
discontinuity of 𝑓.



Definition. 

A function 𝑓(𝑥) is said to be continuous on a set S iff 

𝑓(𝑥) is continuous at every point 𝑝 ∈ 𝑆.
If 𝑓(𝑥) is continuous on 𝐷𝑜𝑚𝑓 then 𝑓 is just called continuous.

Examples.

Functions 𝑓 𝑥 = 𝑥, sin 𝑥, tan 𝑥 , constant functions, logarithmic 
functions, exponential functions, polynomial functions are all 
continuous.

𝑓 𝑥 = ൝
|𝑥|

𝑥
for 𝑥 ≠ 0

0 for x = 0
is continuous everywhere except at 0.



Examples cont'd.

The Dirichlet function 𝐷 𝑥 = ቊ
1 for 𝑥 ∈ ℚ
0 for x ∉ ℚ

is discontinuous 

everywhere. In fact 𝐷(𝑥) does not have a limit at any point 𝑝
because for every 𝛿 > 0, the interval (𝑝 − 𝛿, 𝑝 + 𝛿) contains 
rational and irrational numbers. 
Notice that 𝐷 𝑥 is NOT an elementary function.

Plotting the graph of 𝐷(𝑥) like this is 

cheating. In both lines 𝑦 = 1 and 𝑦 = 0
there are infinitely many gaps which can 

hardly be rendered in a graph.a



Remark.

Given a subset 𝐴 ⊆ 𝑋, the function 𝟙A(𝑥) = ቊ
1 for 𝑥 ∈ 𝐴
0 for x ∉ 𝐴

is 

called the indicator (or characteristic) function of  A. In that 
terminology 𝐷 𝑥 is the characteristic function of ℚ.

The graph of the indicator function 

of the plane region A (under the 

elevated portion of the XY plane).



The Dirichlet function is sometimes called a pathologic function
because of its strange properties. It is the basis for many funny 
examples. For instance, using 𝐷(𝑥) we can construct a function 
which has the whole set ℝ as its domain and has exactly one 
point of continuity. E.g. 𝑓 𝑥 = 𝑥𝐷(𝑥). Clearly, since f 0 =
0 and lim

𝑥→0
𝑓 𝑥 = 0, 𝑥 = 0 is the only point at which 𝑓 𝑥 is 

continuous (lim
𝑥→0

𝑓 𝑥 = 0 by the squeeze theorem).



Remark.

It is wrong to think that continuous functions are those whose 
graphs look like continuous curves (without gaps). The graph of a 
continuous function looks like an unbroken curve only if considered 
on an interval contained in its domain. For example, the signum 
function (1 if 𝑥 > 0, −1 if 𝑥 < 0) is continuous in its domain (ℝ
without 0) even though its graph has a discontinuity. For the same 
reason 𝑡𝑎𝑛(𝑥) is considered continuous. Even outrageously 
discontinuous functions, like the Dirichlet function 𝐷(𝑥), are 
continuous if you restrict them to a subset of ℝ, for example, it is 
continuous on ℚ (well, it is constant there).



tan(𝑥) is continuous everywhere in its domain but it is not 

continuous on ℝ. It is continuous on every open interval which 

does not contain any point from the set {𝑘𝜋 +
𝜋

2
|𝑘 ∈ ℤ} and on 

each of those the graph of tan(𝑥) is an unbroken curve.



Theorem. (arithmetic properties of continuous functions)

Let 𝑓(𝑥) and 𝑔(𝑥) be functions continuous at a point 𝑝. Then:

1. 𝑓 + 𝑔 is continuous at 𝑝,

2. 𝑓𝑔 is continuous at 𝑝,

3.
𝑓

𝑔
is continuous at 𝑝 if 𝑔 𝑝 ≠ 0. 

Notice that 1. and 2. imply that for every constant 𝑐, 𝑐𝑓 is 
continuous at 𝑝 and 𝑓 − 𝑔 is continuous at 𝑝.



Theorem.
Let 𝑓(𝑥) be continuous at a point 𝑝 and let 𝑔(𝑥) be continuous at 
𝑞 = 𝑓(𝑝). Then 𝑔 ∘ 𝑓 is continuous at 𝑝.

Finally we have something which is not a straightforward 
extension of properties of the limit of sequences. Composition of 
sequences usually makes no sense.

In the Nov. 23 lecture I gave you an outline of the proof only. You 
will find the full version below.



Proof. 
We need to prove that lim

𝑥→𝑝
𝑔 𝑓 𝑥 = 𝑔 𝑓 𝑝 i.e., given 𝜀 > 0 we 

must find 𝛿 > 0 such that 
∀𝑥 0 < 𝑥 − 𝑝 < 𝛿 ⇒ 𝑔 𝑓 𝑥 − 𝑔 𝑓 𝑝 < 𝜀. 

Since 𝑔(𝑥) is continuous at 𝑓(𝑝) we have lim
𝑡→𝑓(𝑝)

𝑔 𝑡 = 𝑔 𝑓 𝑝

which means there exists 𝛿𝑔 > 0, such that 
∗ ∀𝑡 0 < 𝑡 − 𝑓(𝑝) < 𝛿𝑔 ⇒ 𝑔 𝑡 − 𝑔 𝑓 𝑝 < 𝜀.

Since lim
𝑥→𝑝

𝑓 𝑥 = 𝑓 𝑝 there exists 𝛿𝑓 > 0 such that

∗∗ ∀𝑥 0 < 𝑥 − 𝑝 < 𝛿𝑓 ⇒ 𝑓(𝑥) − 𝑓 𝑝 < 𝛿𝑔 (yes, 𝛿𝑔 from ∗ ). 

This means if 0 < 𝑥 − 𝑝 < 𝛿𝑓, 𝑓(𝑥) can be used as t in ∗ . 
Concluding, 𝛿𝑓 can serve as the 𝛿 we are looking for. QED



Remark.
The last theorem means that the composition of two continuous 
functions is itself continuous – if we choose carefully the points 
of continuity.

That is something we didn't and couldn't say about sequences.

Corollary.
All elementary functions are continuous.



Theorem. (Intermediate Value Theorem, Darboux Theorem)
If a function 𝑓 is continuous on a closed interval 𝑎, 𝑏 then 𝑓
takes on every value between 𝑓(𝑎) and 𝑓(𝑏). 

To be more precise: if 𝑓 is continuous on 𝑎; 𝑏 then for every 
𝑦0 ∈ 𝑓 𝑎 , 𝑓(𝑏) (or 𝑦0 ∈ 𝑓 𝑏 , 𝑓(𝑎) , if 𝑓(𝑏) ≤ 𝑓(𝑎)) there 
exists 𝑥0 ∈ [𝑎, 𝑏] such that 𝑓 𝑥0 = 𝑦0.

The proof is beyond the scope of this course.

Corollary.
If 𝑓 is continuous on 𝑎, 𝑏 and 𝑓 𝑎 and 𝑓(𝑏) differ in sign then 
there exists at least one 𝑥 ∈ [𝑎, 𝑏] such that 𝑓 𝑥 = 0.

Corollary. (of corollary)
Every polynomial of an odd degree has at least one (real) root.


